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Evolutionary computation (De Jong et al. 1993) is 
being considered with growing interest in musical 
applications. One of the music domains in which 
evolutionary computation has made the most 
impact is music composition. A number of evolu-
tionary systems for composing musical material 
have been proposed (e.g., Horner and Goldberg 1991; 
Dahlstedt and Nordhal 2001). In addition to music 
composition, evolutionary computing has been 
considered in music improvisation applications 
where an evolutionary algorithm typically models a 
musician’s improvising (e.g., Biles 1994). Neverthe-
less, little research focusing on the use of evolution-
ary computation for  expressive- performance analysis 
has been reported.

Traditionally, expressive performance has been 
studied using empirical approaches based on statis-
tical analysis (e.g., Repp 1992), mathematical model-
ing (e.g., Todd 1992), and  analysis- by- synthesis (e.g., 
Friberg et al. 1998). In these approaches, humans are 
responsible for devising a theory or a mathematical 
model that captures different aspects of musical 
expressive performance. The theory or model is 
later tested on real performance data to determine 
its accuracy.

In this article, we describe an approach to investi-
gating musical expressive performance based on 
evolutionary computation. Instead of manually 
modeling expressive performance and testing the 
model on real musical data, we let a computer 
execute a  sequential- covering genetic algorithm to 
automatically discover regularities and performance 
principles from real performance data, consisting of 
audio recordings of jazz standards. The algorithm 
combines sequential covering (Michalski 1969) and 
genetic algorithms (Holland 1975). The  sequential- 
covering component of the algorithm incrementally 
constructs a set of rules by learning new rules one 

at a time, removing the positive examples covered 
by the latest rule before attempting to learn the 
next rule. The genetic component of the algorithm 
learns each of the new rules by applying a genetic 
algorithm.

The algorithm provides an interpretable specifi -
cation of the expressive principles applied to an 
interpretation of piece of music and, at the same 
time, it provides a generative model of expressive 
performance, namely, a model capable of generating 
a  computer- music performance with the timing and 
energy expressiveness that characterizes  human-
 generated music.

The use of evolutionary techniques for modeling 
expressive music performance provides a number of 
potential advantages over other  supervised- learning 
algorithms. By applying our evolutionary algorithm, 
it is possible to explore and analyze the induced 
expressive model as it “evolves,” to guide and 
interact with the evolution of the model, and to 
obtain different models resulting from different 
executions of the algorithm. This last point is very 
relevant to the task of modeling expressive music 
performance, because it is desirable to obtain a 
non- deterministic model capturing the different 
possible interpretations a performer may produce 
for a given piece.

The rest of this article is organized as follows. 
First, we report on related work and describe how 
we extract a set of acoustic features from the audio 
recordings. We then describe our evolutionary ap-
proach for inducing an expressive  music- performance 
computational model. Finally, we present some con-
clusions and indicate some areas of future research.

Related Work

Evolutionary computation has been considered 
with growing interest in musical applications 
(Miranda 2004). A large number of experimental 
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number of errors in  automatic- performance annota-
tion, they use an evolutionary approach to optimize 
the parameter values of cost functions of the edit 
distance. In another study, Hazan et al. (2006) pro-
posed an evolutionary generative  regression- tree 
model for expressive rendering of MIDI perfor-
mances. Madsen and Widmer (2005) present an 
approach exploring similarities in classical piano 
performances based on simple measurements of 
timing and intensity in 12 recordings of a Schubert 
piano piece. The work presented in this article is an 
extension of our previous work (Ramirez and Hazan 
2005), where we induce  expressive- performance 
classifi cation rules using a genetic algorithm. Here, 
in addition to considering classifi cation rules, we 
consider regression rules, and whereas in Ramirez 
and Hazan, rules are independently induced by the 
genetic algorithm, here we apply a  sequential- 
covering algorithm to cover the whole example 
space.

Other  Machine- Learning Techniques

Several approaches have addressed expressive music 
performance using  machine- learning techniques 
other than evolutionary techniques. The work most 
relevant to that presented in this article is described 
in Lopez de Mantaras and Arcos (2002) and Ramirez 
et al. (2005, 2006).

Lopez de Mantaras and Arcos (2002) describe 
SaxEx, a performance system capable of generating 
expressive solo performances of jazz. Their system 
is based on case- based reasoning, a type of analogi-
cal reasoning in which problems are solved by 
reusing the solutions of similar, previously solved 
problems. To generate expressive solo performances, 
the case- based reasoning system retrieves, from a 
memory containing expressive interpretations, 
those notes that are similar to the input inexpres-
sive notes. The case memory contains information 
about metrical strength, note duration, and so on, 
and uses this information to retrieve the appropriate 
notes. However, their system does not allow one to 
examine or understand the way it makes predictions.

Ramirez et al. (2007) explore and compare differ-
ent  machine- learning techniques for inducing both 

systems using evolutionary techniques to generate 
musical compositions have been proposed, includ-
ing Cellular Automata Music (Millen 1990), a 
Cellular Automata Music Workstation (Hunt, Kirk, 
and Orton 1991), CAMUS (Miranda 1993), MOE 
(Degazio 1999), GenDash (Waschka 1999), CAMUS 
3D (McAlpine, Miranda, and Hogar 1999), Vox 
Populi (Manzolli et al. 1999), Synthetic Harmonies 
(Bilotta, Pantano, and Talarico 2000), Living Melo-
dies (Dahlstedt and Nordhal 2001), and Genophone 
(Mandelis 2001). Composition systems based on 
genetic algorithms generally follow the standard 
 genetic- algorithm approach for evolving musical 
materials such as melodies, rhythms, and chords. 
As a result, such compositional systems share the 
core approach with the one presented in this article. 
For example, Vox Populi (Manzolli et al. 1999) 
evolves populations of chords of four notes, each 
of which is represented as a  seven- bit string. The 
genotype of a chord therefore consists of a string of 
28 bits, and the genetic operations of crossover and 
mutation are applied to these strings to produce 
new generations of the population. The fi tness func-
tion is based on three criteria: melodic fi tness, har-
monic fi tness, and  voice- range fi tness. The melodic 
fi tness is evaluated by comparing the notes of the 
chord to a reference value provided by the user; the 
harmonic fi tness takes into account the consonance 
of the chord; and the  voice- range fi tness measures 
whether the notes of the chord are within a range 
also specifi ed by the user. Evolutionary computa-
tion has also been considered for improvisation 
applications (Biles 1994), where a genetic  algorithm- 
based model of a novice jazz musician learning to 
improvise was developed. The system evolves a set 
of melodic ideas that are mapped into notes consid-
ering the chord progression being played. The fi t-
ness function can be altered by the feedback of the 
human playing with the system.

Nevertheless, few works focusing on the use 
of evolutionary computation for  expressive- 
performance analysis exist. In the context of the 
ProMusic project, Grachten et al. (2004) optimized 
the weights of edit- distance operations by a genetic 
algorithm to annotate a human jazz performance. 
They present an enhancement of edit- distance-
 based  music- performance annotation. To reduce the 
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ing the most likely music performer, given a set 
of performances of the same piece by a number of 
skilled candidate pianists. They propose a set of 
simple features for representing stylistic character-
istics of a music performer that relate to a kind of 
“average” performance. A database of piano perfor-
mances of 22 pianists playing two pieces by Frédéric 
Chopin is used; they propose an ensemble of simple 
classifi ers derived by both sub- sampling the training 
set and sub- sampling the input features. Experiments 
show that the proposed features are able to quantify 
the differences between music performers.

Ramirez et al. (2007) and Ramirez and Hazan 
(2007) investigate how jazz saxophone players 
express their view of the musical content of musical 
pieces and how to use this information to automati-
cally identify performers. They study deviations of 
parameters such as pitch, timing, amplitude, and 
timbre both at an  inter- note level and at an  intra-
 note level. Their approach to performer identifi ca-
tion consists of establishing a  performer- dependent 
mapping of  inter- note features (essentially a score, 
whether or not an actual score physically exists) to 
a repertoire of infl ections characterized by  intra- note 
features. They present a successful  performer- 
identifi cation case study.

Melodic Description

In this section, we describe how we extract a sym-
bolic description from the monophonic recordings 
of performances of jazz standards and how we carry 
out a musical analysis based on the extracted sym-
bolic description. Our interest is to model note-
 level transformations such as onset deviations, 
duration transformations, and energy variations. 
Thus, descriptors providing note- level information 
are of particular interest in this context.

Feature- Extraction Algorithms

First, we perform a spectral analysis of a portion of 
sound (the analysis frame), whose size is a param-
eter of the algorithm. This spectral analysis consists 

an interpretable  expressive- performance model 
(characterized by a set of rules) and a generative 
 expressive- performance model. Based on this, they 
describe a performance system capable of generat-
ing expressive monophonic jazz performances and 
providing “explanations” of the expressive transfor-
mations it performs. The work described in this 
article has similar objectives, but by using a genetic 
algorithm, it incorporates some desirable properties: 
(1) the induced model may be explored and analyzed 
while it is evolving; (2) it is possible to guide the 
evolution of the model in a natural way; and (3) by 
repeatedly executing the algorithm, different 
models are obtained. In the context of expressive 
music performance modeling, these properties are 
very relevant. (This article is an extended version of 
Ramirez and Hazan 2007.)

With the exception of the work by Lopez de 
Mantaras and Arcos (2002) and Ramirez et al. (2005, 
2006), most of the research in expressive perfor-
mance using  machine- learning techniques has 
focused on classical piano solo music (e.g., Widmer 
2002; Tobudic and Widmer 2003), in which the 
tempo of the performed pieces is not constant, and 
melody alterations are not permitted. (In classical 
music, melody alterations are often considered 
performance errors.) In those works, the focus is on 
global tempo and energy transformations, whereas 
we are interested in note- level timing and energy 
transformations as well as in melody ornamenta-
tions that are a very important expressive resource 
in jazz.

The induction of  expressive- performance models 
using  machine- learning techniques has also been 
applied to the identifi cation of musicians from their 
playing styles. In this context, Saunders et al. (2004) 
applied string kernels to the problem of recognizing 
famous pianists from their playing styles. The char-
acteristics of performers playing the same piece are 
obtained from changes in beat- level tempo and beat- 
level loudness. From such characteristics, general 
performance alphabets can be derived, and pianists’ 
performances can then be represented as strings. 
They apply both kernel partial least squares and 
support vector machines to these data. Stamatatos 
and Widmer (2005) address the problem of identify-
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windowed frames as explained earlier. Second, the 
prominent spectral peaks are detected. These spec-
tral peaks are defi ned as the local maxima in the 
spectrum whose magnitudes are greater than a 
threshold. The spectral peaks are compared to a 
harmonic series, and a TWM error is computed for 
each  fundamental- frequency candidate. The candi-
date with the minimum error is chosen to be the 
fundamental frequency estimate.

After a fi rst test of this implementation, some 
improvements to the original algorithm were added 
to deal with some of the algorithm’s shortcomings. 
First, a peak- selection routine has been added to 
eliminate spectral peaks corresponding to noise. 
The peak selection is done according to a masking 
threshold around each of the maximum magnitude 
peaks. The form of the masking threshold depends 
on the peak amplitude, and uses three different 
slopes depending on the frequency distance to the 
peak frequency. Second, we consider previous val-
ues of the fundamental frequency estimation and 
instrument dependencies to obtain a more adapted 
result. Finally, a noise gate based on some low- level 
signal descriptors is applied to detect silences, so 
that the estimation is only performed in non- silent 
segments of the sound.

Segmentation into Notes

Energy onsets are fi rst detected following a band-
 wise algorithm that uses psychoacoustic knowledge 
(Klapuri 1999). In a second step,  fundamental- 
frequency transitions are also detected. Finally, 
both results are merged to fi nd the note boundaries 
(onset and offset information).

Note- Descriptor Computation

We compute note descriptors using the note bound-
aries and the low- level descriptors values. The low- 
level descriptors associated to a note segment are 
computed by averaging the frame values within this 
note segment. Pitch histograms have been used to 
compute the note’s pitch and the fundamental 

of multiplying the audio frame with an appropriate 
analysis window and performing a Discrete Fourier 
Transform (DFT) to obtain its spectrum. In this 
case, we use a frame width of 46 msec, an overlap 
factor of 50%, and a  Kaiser- Bessel 25- dB window.

Computation of Low- Level Descriptors

The main low- level descriptors used to characterize 
expressive performance are instantaneous energy 
and fundamental frequency. The energy descriptor 
is computed in the frequency domain, using the 
values of the amplitude spectrum at each analysis 
frame. In addition, energy is computed in different 
frequency bands as defi ned in Klapuri (1999), and 
these values are used by the algorithm for segmen-
tation into notes.

For the estimation of the instantaneous funda-
mental frequency, we use a  harmonic- matching 
model derived from the Two- Way Mismatch (TWM) 
procedure (Maher and Beauchamp 1994). For each 
fundamental frequency candidate, mismatches 
between the harmonics generated and the measured 
partials frequencies are averaged over a fi xed subset 
of the available partials. A weighting scheme is 
used to make the procedure robust to the presence 
of noise or the absence of certain partials in the 
spectral data. The solution presented in Maher and 
Beauchamp (1994) employs two mismatch error 
calculations. The fi rst one is based on the frequency 
difference between each partial in the measured 
sequence and its nearest neighbor in the predicted 
sequence. The second is based on the mismatch 
between each harmonic in the predicted sequence 
and its nearest partial neighbor in the measured 
sequence. This two- way mismatch helps avoid 
octave errors by applying a penalty for partials that 
are present in the measured data but are not pre-
dicted, and also for partials whose presence is pre-
dicted but which do not actually appear in the 
measured sequence. The TWM mismatch procedure 
also has the benefi t that the effect of any spurious 
components can be counteracted by the presence of 
uncorrupted partials in the same frame.

First, we perform a spectral analysis of all the 
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tations and these factors are a result of exposure to 
music throughout our lives and our familiarity with 
musical styles and particular melodies.

Any two consecutively perceived notes constitute 
a melodic interval, and if this interval is not con-
ceived as complete, it is an implicative interval, that 
is, an interval that implies a subsequent interval 
with certain characteristics. That is to say, some 
notes are more likely than others to follow the im-
plicative interval. Two main principles recognized 
by Narmour concern registral direction and inter-
vallic difference. The principle of registral direction 
states that small intervals imply an interval in the 
same registral direction (a small upward interval 
implies another upward interval and analogously for 
downward intervals), and large intervals imply a 
change in registral direction (a large upward interval 
implies a downward interval and analogously for 
downward intervals). The principle of intervallic 
difference states that a small interval (i.e., fi ve semi-
tones or less) implies a similarly sized interval (plus 
or minus two semitones), and a large interval (i.e., 
seven semitones or more) implies a smaller interval. 
Based on these two principles, melodic patterns or 
groups can be identifi ed that either satisfy or violate 
the implication as predicted by the principles. Fig-
ure 1 shows prototypical Narmour structures.

A note in a melody often belongs to more than 
one structure. Thus, a description of a melody as a 
sequence of Narmour structures consists of a list of 
overlapping structures. Each melody in the training 
data is parsed to automatically generate an implica-
tion / realization analysis of the pieces. Figure 2 
shows the analysis for a fragment of a melody.

Learning the  Expressive- Performance Model

In this section, we describe our inductive approach 
for learning an expressive  music- performance 
model from performances of jazz standards. Our 

frequency that represents each note segment, as 
found in McNab, Smith, and Witten (1996). This is 
done to avoid taking into account mistaken frames 
in the  fundamental- frequency mean computation. 
First, frequency values f are converted into cents c:
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where fref = 8.176. Then, we defi ne histograms with 
bins of 100 cents and a hop size of 5 cents, and we 
compute the maximum of the histogram to identify 
the note’s pitch. Finally, we compute the mean 
frequency over all the points that belong to the 
histogram. The MIDI pitch is computed by quanti-
zation of this mean fundamental frequency over the 
frames within the note limits.

Musical Analysis

It is widely recognized that expressive performance 
is a  multi- level phenomenon and that humans per-
form music considering a number of abstract musi-
cal structures. After computing the note descriptors 
as explained, and as a fi rst step toward providing an 
abstract structure for the recordings under study, we 
decided to use Narmour’s theory of perception and 
cognition of melodies (Narmour 1990) to analyze 
the structure of the music pieces performed.

The Implication / Realization model is a theory of 
melody perception and cognition. The theory states 
that a melodic musical line continuously causes 
listeners to generate expectations of how the mel-
ody should continue. An individual’s expectations 
are motivated by two types of sources: innate and 
learned. According to Narmour, on one hand we are 
all born with innate information that suggests to us 
how a particular melody should continue. On the 
other hand, learned factors also infl uence our expec-

Figure 1. Prototypical 
Narmour structures. P = 
process; D = duplication; 
ID = intervallic duplica-
tion; IP = intervallic pro-

cess; VP = registral process; 
R = reversal; IR = interval-
lic reversal; VR = registral 
reversal. For details, see 
Narmour (1990).
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Learning Task

In this article, we are concerned with note- level 
expressive transformations—in particular, transfor-
mations of note duration, onset, and energy. Initially, 
for each expressive transformation, we approach the 
problem as a classifi cation problem: for note-
 duration transformations, for example, we classify 
each note as belong to one of the classes lengthen, 
shorten, or same. Once we obtain a classifi cation 
mechanism capable of classifying all notes in our 
training data, we apply a regression algorithm to 
produce a numeric value representing the amount of 
transformation to be applied to a particular note. The 
complete algorithm is detailed in the next section.

The performance classes that interest us are 
lengthen, shorten, and same for duration trans-
formation; advance, delay, and same for onset 
deviation; soft, loud, and same for energy; and 
ornamentation and none for note alteration. A 
note is considered to belong to class lengthen if its 
performed duration is 20% longer (or more) than its 
nominal duration, that is, its duration according to 
the score. Class shorten is defi ned analogously. A 
note is considered to be in class advance if its 
performed onset is 5% of a bar earlier (or more) than 
its nominal onset. Class delay is defi ned analo-
gously. A note is considered to be in class loud if it 
is played louder than its predecessor and louder 
than the average level of the piece. Class soft is 
defi ned analogously. We decided to set these bound-
aries after experimenting with different ratios. The 
main idea was to guarantee that a note classifi ed as 
lengthen, for instance, was purposely lengthened 
by the performer and not the result of a performance 
inexactitude. A note is considered to belong to class 
ornamentation if a note or group of notes not 
specifi ed in the score has been introduced in the 
performance to embellish the note in the melody, 
and to class none otherwise.

aim is to obtain a model capable of automatically 
generating music performances with the expressive-
ness that characterizes  human- generated music. In 
other words, we intend to generate automatically 
 human- like expressive performances of a piece 
given an inexpressive description of the piece (e.g., 
a textual description of its score).

Training Data

The training data used in our experimental investi-
gations are monophonic recordings of four jazz 
standards (Body and Soul, Once I Loved, Like 
Someone in Love, and Up Jumped Spring) performed 
by a professional musician at eleven different tempi 
around the nominal tempo. For each piece, the 
nominal tempo was determined by the musician as 
the most natural and comfortable tempo to inter-
pret the piece. Also, the musician identifi ed the 
fastest and slowest tempi at which each piece could 
be reasonably interpreted. Interpretations were 
recorded at regular intervals around the nominal 
tempo (fi ve faster and fi ve slower) within the fastest–
slowest tempo limits. The data set is composed of 
4,360 performed notes. Each note in the training 
data is annotated with its corresponding performed 
characteristics (i.e., performed duration, onset, and 
energy) and a number of score attributes represent-
ing both properties of the note itself and aspects of 
the context in which the note appears. Information 
about the note includes note duration and the note 
metrical position within a bar, and information 
about its melodic context includes performed tempo, 
information on neighboring notes, as well as the 
Narmour structure in which the note appears. (We 
focused on the Narmour group in which the note 
appears in third position, because this provides the 
best indicator of the degree to which the note is 
expected.)

Figure 2. Narmour analysis 
of All of Me.
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positive) by adding a new disjunct. At this level, the 
search is a  specifi c- to- general search, starting with 
the most specifi c hypothesis (i.e., the empty dis-
junction) and terminating when the hypothesis is 
suffi ciently general to cover all training examples. 
NumericNewRule is a rule in which the consequent 
Regression(Rpos) is a linear equation

 X w w a w a w ak k= + + + +0 1 1 2 2 …  (2)

where X is the predicted value expressed as a linear 
combination of the attributes a1, . . . , ak of the 
training examples with predetermined weights 
w0, . . . , wk. The weights are calculated using the 
set of positive examples covered by the rule Rpos by 
linear regression. In the case of note alteration, 
namely, when dealing with ornamentations, 
Regression(Rpos) is simply the set examples 
covered by the rule.

The inner loop performs a  fi ner- grained search to 
determine the exact form of each new rule. This is 
done by applying a genetic algorithm with the usual 
parameters r, m, and p, specifying the fraction of the 
parent population replaced by crossover, the muta-
tion rate, and population size, respectively. The 
exact values for these parameters are presented in 
Table 1.

In the inner loop, a new generation is created as 
follows. First, probabilistically select (1 – r)p mem-
bers of P to add to the successor population Ps. The 
probability Pr(hi) of selecting hypothesis hi from P is

 Pr( )
( )

,  ( )h
Fitness h

h
j pi

i

j

= ≤ ≤
∑

1  (3)

Next, probabilistically select (r × p) / 2 pairs of hy-
pothesis from P (according to Pr(hi) above). For each 
pair, produce an offspring by applying the crossover 
operator (see subsequent description) and add it to 
the successor population Ps. Finally, choose the 

Algorithm

We applied a genetic  sequential- covering algorithm 
to the training data. Roughly, the algorithm incre-
mentally constructs a set of rules by learning new 
rules one at a time, removing the positive examples 
covered by the latest rule before attempting to learn 
the next rule. Rules are learned using a genetic 
algorithm evolving a population of rules with the 
usual mutation and crossover operations. The algo-
rithm constructs a hierarchical set of rules. Once 
constructed, the rules in the generated set are ap-
plied in the order they were generated. Thus, there 
is always a single rule that can be applied.

For each class of interest (e.g., lengthen, 
shorten, same), we collect the rules with best 
fi tness during the evolution of the population. For 
obtaining rules for a particular class of interest (e.g., 
lengthen) we consider as negative examples the 
examples of the other two complementary classes 
(e.g., shorten and same).

In the case of note duration, onset, and energy, 
once we obtain the set of rules covering all the 
training examples, then for each rule, we apply 
linear regression to the examples covered by the 
rule to obtain a linear equation that predicts a nu-
merical value. This leads to a set of rules producing 
a numeric prediction and not just a nominal class 
prediction. In the case of note alteration, we do not 
compute a numeric value; instead, we simply keep 
the set of examples covered by the rule. Later, for 
generation, we apply a standard k- nearest- neighbor 
algorithm to select one of the examples covered by 
the rule and adapt the selected example to the new 
melodic context (i.e., to transpose the ornamental 
note[s] to fi t the melody key and ornamented note 
pitch). The algorithm is shown in Figure 3.

The outer loop learns new rules one at a time, 
removing the positive examples covered by the 
latest rule before attempting to learn the next rule. 
The inner loop performs a genetic search through 
the space of possible rules in search of a rule with 
high accuracy. With each iteration, the outer loop 
adds a new rule to its disjunctive hypothesis, 
Learned_rules. The effect of each new rule is to 
generalize the current disjunctive hypothesis (i.e., 
increasing the number of instances it classifi es as 

Table 1. Parameter Values of the Genetic Algorithm

Parameter Identifi er Value

Crossover rate R 0.8
Mutation rate m 0.05
Population size p 200
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previous and next note duration are represented 
each by fi ve bits (i.e., much shorter, shorter, 
same, longer, and much longer), previous and 
next note pitch are represented each by fi ve bits (i.e., 
much lower, lower, same, higher, and much 
higher), metrical strength by fi ve bits (i.e., very 
weak, weak, medium, strong, and very strong), 
tempo by three bits (i.e., slow, nominal, and fast), 
and the Narmour group by three bits. The last three 

fraction m of the members of Ps with uniform 
probability, and apply the mutation operator (see 
below).

Hypothesis Representation

The hypothesis space of rule preconditions consists 
of a conjunction of a fi xed set of attributes. Each 
rule is represented as a bit- string as follows. The 

Figure 3. Genetic  sequential- 
covering algorithm used to 
train the  expressive- 
performance model.

GeneticSeqCovAlg(Class,Fitness,Threshold,p,r,m,Examples) 

 Pos = examples that belong to Class 

 Neg = examples that do not belong to Class 

 Learned_rules = {} 

 While Pos do 

  P = generate p hypotheses at random 

  For each hypothesis h in P, 

   Compute fitness(h) 

  While the highest fitness(h) in Pos less than Threshold do 

   Create a new generation Pnew 

   P = Pnew 

   For each h in P, 

    Compute fitness(h) 

  NewRule = the hypothesis in P that has the highest fitness 

  Rpos = members of Pos covered by NewRule 

  Compute PredictedValue(Rpos) 

  NumericNewRule = NewRule with Class replaced by Regression(Rpos) 

  Learned_rules = Learned_rules + NumericNewRule 

  Pos = Pos – Rpos 

 Return Learned_rules 
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code only one Narmour group for each note. That is, 
instead of specifying all the possible Narmour groups 
for a note, we select the one in which the note ap-
pears in third position.

Genetic Operators

We use the standard  single- point crossover and mu-
tation operators with two restrictions. To perform a 
crossover operation of two parents, the crossover 
points are chosen at random as long as they are on 
the  attribute- substring boundaries. Similarly, the 
mutation points are chosen randomly as long as 
they do not generate inconsistent rule strings, for 
example, only one class can be predicted so exactly 
one 1 can appear in the last  three- bit substring.

Fitness Function

The fi tness of each hypothesized rule is based on its 
classifi cation accuracy over the training data. In 
particular, fi tness is defi ned as tpα / (tp + fp), where tp 
is the number of true positives, fp is the number of 
false positives, and α is a constant that controls the 
true- positives to  false- positives ratio. We set α = 1.15, 
which, for our application, is a good compromise 
between coverage and accuracy.

Results

It is always diffi cult to formally evaluate a model 
that captures subjective knowledge, as it is the case 
of an expressive  music- performance model. The 
ultimate evaluation may consist of listening to the 
transformations the model performs. Alternatively, 
the model can be evaluated by comparing the 
model’s transformation predictions and the actual 
transformations performed by the musician. Figure 
4 shows the note- by- note duration ratio predicted 
by a model induced by the algorithm and compares 
it with the actual duration ratio in the recording. 
Similar results were obtained for the predicted 
onset deviation and energy variation. As illustrated 
by Figure 4, the induced model seems to accurately 
capture the musician’s  expressive- performance 

bits represent the predicted class (e.g., shorten, 
same, or lengthen for note duration).

Except for the Narmour group and the predicted 
class bits (i.e., the last six bits), two or more 1s in 
the bit string of a particular feature is interpreted as 
disjunction. For instance, the string 11010 for 
next- note duration means “the duration of the next 
note is either much shorter, shorter, or longer.” 
(Note that in this context, 11111 is equivalent to 
true.) In the case of the  Narmour- group bits, each 
string denotes a particular Narmour structure. 
Clearly, the predicted class string allows exactly 
one 1 representing the predicted class. (The genetic 
operators are designed in such a way that this is 
always the case.) For example, in our representa-
tion, the rule “if the previous note duration is much 
longer, and its pitch is the same, and it is in a very 
strong metrical position, and the current note ap-
pears in Narmour group R, then lengthen the dura-
tion of the current note” is coded as the binary string 
00001 11111 00100 11111 00001 111 110 001.

The exact meaning of the adjectives (referring to 
the score information) that the particular bits repre-
sent are as follows:  previous-  and next- note dura-
tions are considered much shorter if the duration 
is less than half of the current note, shorter if it is 
shorter than the current note but longer than its 
half, and same if the duration is the same as the 
current note. Both much longer and longer are 
defi ned analogously.  Previous-  and- next note 
pitches are considered much lower if the pitch is 
lower by a minor third or more, lower if the pitch 
is within a minor third, and same if it has same 
pitch. Both higher and much higher are defi ned 
analogously. The note’s metrical position is very 
strong, strong, medium, weak, and very weak if 
it is on the fi rst beat of the bar, on the third beat of 
the bar, on the second or fourth beat (an offbeat), or 
in none of these positions, respectively. Tempo is 
characterized as slow, nominal, or fast if the 
piece was performed at a speed slower than the 
nominal tempo (i.e., that identifi ed as the most 
natural by the performer) by more than 15%, within 
15% of the nominal tempo, or faster than the nomi-
nal tempo by more than 15%, respectively. In the 
case of the note’s Narmour groups, we decided to 
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correlation coeffi cients from different runs. We 
observed no substantial differences. As a result of 
executing the genetic algorithm several times, we 
obtained different models. These models clearly 
share similar performance trends but at the same 
time generate slightly different expressive 
performances.

We allowed the user to infl uence the construction 
of the expressive model by imposing “readability 
constraints” on the shape of the rules. That is, the 
user was able to restrict the rule format (e.g., allow 
only some bit sequences) during the evolution to 

transformations (despite the relatively small amount 
of training data).

The correlation coeffi cients for the onset, dura-
tion, and energy sub- models are 0.80, 0.84, and 0.86, 
respectively. These numbers were obtained by per-
forming a ten- fold  cross- validation on the data. At 
each fold, we removed the performances similar to 
the ones selected in the test set, that is, the perfor-
mances of the same piece at tempi within 10% of 
performances in the test set.

We ran the  sequential- covering genetic algorithm 
20 times to observe the differences among the 

Figure 4. Comparison 
between  model- predicted 
duration values and the 
actual performed values 
for the fi rst 30 notes of 
Body and Soul at a tempo 
of 65 beats per minute.
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then the duration of the current note remains the 
same (i.e., no lengthening or shortening).”

Analysis

These simple rules turn out to be very accurate: the 
fi rst rule predicts 92%, the second rule predicts 
100%, and the third rule predicts 90% of the rel-
evant cases. Some of the rules turn out to be of 
musical interest; for instance, Rule 1 states that a 
note is to be lengthened if the two previous notes 
have the same pitch (i.e., it appears in a D Narmour 
group) and it has similar duration to the following 
note. This rule may represent the performer’s inten-
tion to differentiate the last note of a sequence of 
notes with the same pitch.

Conclusion

This article describes an  evolutionary- computation 
approach for learning an  expressive- performance 
model from recordings of jazz standards by a skilled 
saxophone player. Our objective has been to fi nd a 
computational model that predicts how a particular 
note in a particular context should be played (e.g., 
longer or shorter than its nominal duration). To 
induce the  expressive- performance model, we 
extracted a set of acoustic features from the record-
ings resulting in a symbolic representation of the 
performed pieces, and we then applied a  sequential- 
covering genetic algorithm to the symbolic data and 
information about the context in which the data ap-
pear. Despite the relatively small amount of train-
ing data, the induced model seems to accurately 
capture the musician’s  expressive- performance 
transformations. In addition, some of the classifi ca-
tion rules induced by the algorithm proved to be of 
musical interest. Currently, we are in the process of 
increasing the amount of training data as well as 
experimenting with different information encoded 
in the data. Increasing the size of the training data 
set, extending the information in it, and combining 
it with background musical knowledge will cer-
tainly generate more models. We are also extending 

enhance the interpretability of the induced rules. 
We examined some of the classifi cation rules the 
algorithm induced (before replacing the class with 
the numerical predicted value), and we observed 
rules of different types. Some rules focus on features 
of the note itself and depend on the performance 
tempo, whereas others focus on the Narmour 
analysis and are independent of the performance 
tempo. Rules referring to the local context of a note 
(i.e., rules classifying a note solely in terms of the 
timing, pitch, and metrical strength of the note and 
its neighbors), as well as compound rules that refer 
to both the local context and the Narmour struc-
ture, were discovered.

To illustrate the types of rules found, we now 
present some examples of duration rules.

Rule 1

This rule, given by the sequence 11111 01110 
11110 00110 00011 010 010 001, states, “In 
nominal tempo, if the duration of the next note is 
similar, and the note is in a strong metrical posi-
tion, and the note appears in a D Narmour group, 
then lengthen the current note.”

Rule 2

This rule, given by the sequence 00111 00111 
00011 01101 10101 111 111 100, states “If the 
previous and next notes durations are longer (or 
equal) than the duration of the current note and the 
pitch of the previous note is higher, then shorten 
the current note.”

Rule 3

This rule, given by the sequence 01000 11100 
01111 01110 00111 111 111 010, states, “If the 
previous note is slightly shorter and not much 
lower in pitch, and the next note is not longer and 
has a similar pitch (within a minor third), and the 
current note is not on a weak metrical position, 
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Hazan, A., et al. 2006. “Modeling Expressive Perfor-
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Typed Genetic Programming.” Proceedings of the Euro-
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Holland, J. H. (1975). Adaptation in Natural and Arti-
fi cial Systems. Ann Arbor, Michigan: University of 
Michigan Press.

Horner, A., and D. E. Goldberg. 1991. “Genetic Algo-
rithms and  Computer- Assisted Music Composition.” 
Proceedings of the 1991 International Computer Music 
Conference. San Francisco, California: International 
Computer Music Association, pp. 479–482.

Hunt, A., R. Kirk, and R. Orton. 1991. “Musical Appli-
cations of a Cellular Automata Workstation.” Pro-
ceedings of the 1991 International Computer Music 
Conference. San Francisco, California: International 
Computer Music Association, pp. 165–166.

Klapuri, A. 1999. “Sound Onset Detection by Apply-
ing Psychoacoustic Knowledge.” Proceedings of the 
1999 IEEE International Conference on Acoustics, 
Speech and Signal Processing. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers, 
pp. 3089–3092.

Lopez de Mantaras, R., and J. L. Arcos. 2002. “AI and 
Music: From Composition to Expressive Performance.” 
AI Magazine 23(3):32–57.

Madsen, S. T., and G. Widmer. 2005. “Exploring Simi-
larities in Music Performances with an Evolutionary 
Algorithm.” Proceedings of the International FLAIRS 
Conference. Menlo Park, California: AAAI Press, 
pp. 80–85.

Maher, R. C., and J. W. Beauchamp. 1994. “Fundamental 
Frequency Estimation of Musical Signals Using a Two-
 Way Mismatch Procedure.” Journal of the Acoustical 
Society of America 95(4):2254–2263.

Mandelis, J. 2001. “Genophone: An Evolutionary Approach 
to Sound Synthesis and Performance.” In E. Bilotta, et 
al., eds. Proceedings of ALMMA 2002 Workshop on Ar-
tifi cial Models for Musical Applications. Castrolibero, 
Italy: Editoriale Bios, pp. 108–119.

Manzolli, J., et al. 1999. “An Evolutionary Approach Ap-
plied to Algorithmic Composition.” In E. R. Miranda 
and G. L. Ramalho, eds. Proceedings of the VI Brazil-
ian Symposium on Computer Music. Rio de Janeiro: 
SBC / Entre Lugar, pp. 201–210.

McAlpine, K., E. R. Miranda, and S. Hogar. 1999. “Com-
posing Music with Algorithms: A Case Study System.” 
Computer Music Journal 23(2):19–30.

our model to be able to predict  intra- note expressive 
features such as vibrato and instantaneous energy. 
We characterize each performed note by its instan-
taneous pitch and energy, along with its timbre 
features, and we induce a model to predict these 
features according to the note’s musical context.

Acknowledgments

This work is supported by the Spanish TIN Project 
ProSeMus (TIN2006- 14932- C02- 01). We would like 
to thank Emilia Gomez and Maarten Grachten for 
their invaluable help in processing the data, as well 
as the reviewers for their insightful comments and 
pointers to related work.

References

Biles, J. A. 1994. “GenJam: A Genetic Algorithm for Gen-
erating Jazz Solos.” Proceedings of the 1994 Interna-
tional Computer Music Conference. San Francisco, 
California: International Computer Music Association, 
pp. 131–137.

Bilotta, E., P. Pantano, and V. Talarico. 2000. “Synthetic 
Harmonies: An Approach to Musical Semiosis by 
Means of Cellular Automata.” In M. A. Bedau, et al., 
eds. Proceedings of Artifi cial Life VII. Cambridge, Mas-
sachusetts: MIT Press, pp. 537–546.

Dahlstedt, P., and M. G. Nordhal. 2001. “Living Melodies: 
Coevolution of Sonic Communication.” Leonardo 
34(3):243–248.

Degazio, B. 1999. “La Evolucion de los Organismos Musi-
cales.” In E. R. Miranda, ed. Musica y Nuevas Tec-
nologias: Perspectivas para el Siglo XXI. Barcelona: 
L’Angelot, pp. 137–148.

De Jong, K.A., et al. 1993. “Using Genetic Algorithms for 
Concept Learning.” Machine Learning 13:161–188.

Friberg, A., et al. 1998. “Musical Punctuation on the Mi-
crolevel: Automatic Identifi cation and Performance of 
Small Melodic Units.” Journal of New Music Research 
27(3):217–292.

Grachten, M., J. Luis Arcos, and R. Lopez de Mantaras. 
2004. “Evolutionary Optimization of Music Perfor-
mance Annotation.” Proceedings of the 2004 Confer-
ence on Computer Music Modeling and Retrieval. 
Berlin: Springer, pp. 347–358.



50 Computer Music Journal

Transactions on Circuits and Systems for Video Tech-
nology 17(3):356–364.

Ramirez, R., and A. Hazan. 2007. “A Rule- Based Expres-
sive Performance Model for Jazz Saxophone.” Pro-
ceedings of the International Workshop on Artifi cial 
Intelligence and Music. Hyderabad, India: IAAA, 
pp. 37–42.

Repp, B. H. 1992. “Diversity and Commonality in Music 
Performance: An Analysis of Timing Microstructure 
in Schumann’s ‘Traumerei’.” Journal of the Acoustical 
Society of America 92(5):2546–2568.

Saunders, C., et al. 2004. “Using String Kernels to Identify 
Famous Performers from Their Playing Style.” Pro-
ceedings of the 15th European Conference on Machine 
Learning. Berlin: Springer, pp. 2546–2568.

Stamatatos, E., and G. Widmer. 2005. “Automatic Identi-
fi cation of Music Performers with Learning Ensembles.” 
Artifi cial Intelligence 165(1):37–56.

Tobudic, A., and G. Widmer. 2003. “Relational IBL in 
Music with a New Structural Similarity Measure.” Pro-
ceedings of the International Conference on Inductive 
Logic Programming. Berlin: Springer, pp. 37–56.

Todd, N. 1992. “The Dynamics of Dynamics: A Model of 
Musical Expression.” Journal of the Acoustical Society 
of America 91:3540–3550.

Waschka II, R. 1999. “Avoiding the Fitness Bottleneck: 
Using Genetic Algorithms to Compose Orchestral Mu-
sic.” Proceedings of the 1999 International Computer 
Music Conference. San Francisco, California: Interna-
tional Computer Music Association, pp. 201–203.

Widmer, G. 2002. “Machine Discoveries: A Few Simple, 
Robust Local Expression Principles.” Journal of New 
Music Research 31(1):37–50.

McNab, R. J., L. A. Smith, and I. H. Witten. 1996. “Signal 
Processing for Melody Transcription.” Proceedings of 
the 19th Australasian Computer Science Conference. 
Melbourne, Australia: University of Melbourne and 
RMIT, pp. 301–307.

Michalski, R. S. 1969. “On the Quasi- Minimal Solution 
of the General Covering Problem.” Proceedings of the 
First International Symposium on Information Pro-
cessing, Bled, Yugoslavia: N.P., pp. 125–128.

Millen, D. 1990. “Cellular Automata Music.” Proceed-
ings of the 1990 International Computer Music 
Conference. San Francisco, California: International 
Computer Music Association, pp. 314–316.

Miranda, E. R. 1993. “Cellular Automata Music: An In-
terdisciplinary Music Project.” Interface 22(1):3–21.

Miranda, E. R. 2004. “At the Crossroads of Evolutionary 
Computation and Music: Self- Programming Synthe-
sizers, Swarm Orchestras and the Origins of Melody.” 
Evolutionary Computation 12(2):137–158.

Narmour, E. 1990. The Analysis and Cognition of Basic 
Melodic Structures: The Implication Realization 
Model. Chicago: University of Chicago Press.

Ramirez, R., et al. 2005. “Understanding Expressive 
Transformations in Saxophone Jazz Performances.” 
Journal of New Music Research 34(4):319–330.

Ramirez, R., et al. 2006. “A Data Mining Approach to 
Expressive Music Performance Modeling.” In Valery 
Petrushin, ed. Multimedia Data Mining and Knowl-
edge Discovery. Berlin: Springer, pp. 362–380.

Ramirez, R., and A. Hazan. 2005. “Understanding Expres-
sive Music Performance Using Genetic Algorithms.” 
Proceedings of the European Workshop on Evolution-
ary Music and Art. Berlin: Springer, pp. 508–516.

Ramirez, R., et al. 2007. “Performance- Based Interpreter 
Identifi cation in Saxophone Audio Recordings.” IEEE 






